Skip to main content

Packet Synchronization in a Network Time Protocol Server and ASTM Elecsys Packets During Detection for Cancer with Optical DNA Biochip

  • Conference paper
  • First Online:
Advances in Multidisciplinary Medical Technologies ─ Engineering, Modeling and Findings

Abstract

DNA biochip technology (especially in the optical field) can study a large amount of nucleic acid records at high throughput. It makes viable the simultaneous scrutiny of quite a few of tens of thousands of genes belonging to a healthy or diseased biological sample in terms of its genome (DNA). This article overviews optical DNA biochips as well as the Network Time Protocol (NTP) protocol deployment for synchronization among the collection database and the optical biochip automaton via the ASTM Elecsys protocol for better real-time detection with diagnosis of genetically mutated cancer. The present study utilizes the UNIX Server platform and NTP to synchronize communication between servers and optical DNA. Section 7.4 brings in automates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Cagnin, M. Caraballo, C. Guiducci, P.G. Martini, M. Ross, M. SantaAna, D. Danley, T. West, G. Lanfranchi, Overview of electrochemical DNA biosensors: New approaches to detect the expression of life. Sensors (Basel, Switzerland) 9, 3122–3148 (2009)

    Article  Google Scholar 

  2. K.E. Korhonen, S.P. Weinstein, E.S. McDonald, E.F. Conant, Strategies to increase cancer detection: review of true-positive and false-negative results at digital breast tomosynthesis screening. Radiographics 36(7), 1954–1965 (2016)

    Article  Google Scholar 

  3. I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M.C. Millot, M. Goossens, M. Canva, Surface plasmon resonance imaging (SPRI) system and real-time moni-toring of DNA biochip for human genetic mutation diagnosis of DNA amplified samples. Sensors Actuators B Chem. 119(2), 583–591 (2006). https://doi.org/10.1016/j.snb.2006.01.023

    Article  Google Scholar 

  4. M.G. Nair, S.S. Sandhu, A.K. Sharma, Cancer molecular markers: a guide to cancer detection and management. Semin. Cancer Biol. 52(Pt 1), 39–55 (2018)

    Article  Google Scholar 

  5. X. Zeng, Y. Yang, N. Zhang, D. Ji, X. Gu, J.M. Jornet, Y. Wu, Q. Gan, Plasmonic interferometer array biochip as a new mobile medical device for cancer detection. IEEE J. Sel. Top. Quantum Electron. 25, 1–7 (2019)

    Article  Google Scholar 

  6. J.A. Fee, F.P. McGrady, C. Rosendahl, N.D. Hart, Training primary care physicians in dermoscopy for skin cancer detection: A scoping review. J. Cancer Educ., 1–8 (2019)

    Google Scholar 

  7. B. Han, Y.-L. Zhang, L. Zhu, X.-H. Chen, Z.-C. Ma, X.-L. Zhang, H.-B. Sun, Direct laser scribing of AgNPs RGO biochip as a reusable SERS sensor for DNA detection. Sensors Actuators B Chem. 270, 500–507 (2018). https://doi.org/10.1016/j.snb.2018.05.043

    Article  Google Scholar 

  8. V.V. Estrela, O. Saotome, H.J. Loschi, D.J. Hemanth, W.S. Farfan, R.J. Aroma, C. Saravanan, E.G.H. Grata, Emergency response cyber-physical framework for landslide avoidance with sustainable electronics. Technologies 6, 42 (2018). https://doi.org/10.3390/technologies6020042

    Article  Google Scholar 

  9. N. Razmjooy, V.V. Estrela, Applications of Image Processing and Soft Computing Systems in Agriculture (IGI Global, Hershey, 2019), pp. 1–300. https://doi.org/10.4018/978-1-5225-8027-0

    Book  Google Scholar 

  10. I. Mannelli, V. Courtois, P. Lecaruyer, G. Roger, M.C. Millot, M. Goossens, M. Canva, Surface plasmon resonance imaging (SPRI) system and real-time monitoring of DNA biochip for human genetic mutation diagnosis of DNA amplified samples. Sensors Actuators B Chem. 119(2), 583–591 (2006). https://doi.org/10.1016/j.snb.2006.01.023

    Article  Google Scholar 

  11. P. Liepold, H. Wieder, H. Hillebrandt, A. Friebel, G. Hartwich, DNA-arrays with electrical detection: A label-free low cost technology for routine use in life sciences and diagnostics. Bioelectrochemistry 67(2), 143–150 (2005)

    Article  Google Scholar 

  12. G. Kovacs, Optical excitation of surface plasmon-polaritons in layered media, in Electromagnetic Surface Modes, (Wiley, Boardman, 1982), p. 143

    Google Scholar 

  13. J. Homola, Surface Plasmon Resonance Biosensors, in Optical Biosensors: Present and Future, vol 207 (2002)

    Google Scholar 

  14. K. Vijayalayan, D. Veitch, Rot at the Roots? Examining Public Timing Infrastructure, in Proceedings of the 35th Annual IEEE International Conference on Computer Communications (2016), pp. 1–9

    Google Scholar 

  15. D. Matsakis, Time and frequency activities at the U.S. naval observatory, frequency control symposium and exposition. Proceedings of the 2005 IEEE International (2005), pp. 271–224

    Google Scholar 

  16. R.B. Warrington, P.T.H. Fisk, M.J. Wouters, M.A. Lawn, J.S. Thorn, S. Quigg, A. Gajaweera, S.J. Park, Time and frequency activities at the national measurement institute, Australia, Frequency control symposium and exposition, 2005. Proceedings of the 2005 IEEE International (2005), pp. 231–234

    Google Scholar 

  17. IEEE Std 1588-2008: IEEE standard for a Precision clock synchronization protocol for networked measurement and control systems[S]. IEEE1588-2008 standard (2008)

    Google Scholar 

  18. K.J. Zhao, A.I. Zhang, D.Y. Mning, Implementation of network time server system based on NTP. Electron. Test (7), 13–16 (2008)

    Google Scholar 

  19. D.L. Mills, Internet time synchronization: The network time protocol. IEEE Trans. Commun. 39(10), 1482–1493 (1991)

    Article  Google Scholar 

  20. https://www.aggsoft.com/serial-data-logger/tutorials/astm.htm, last accessed 2020/05/21

  21. Roche Diagnostics Host Interface Manual – Version 1.4 (2013)

    Google Scholar 

  22. A.C.B. Monteiro, R.P. Franca, V.V. Estrela, S.R. Fernandes, A. Khelassi, R.J. Aroma, K. Raimond, Y. Iano, A. Arshaghi, UAV-CPSs as a test bed for new technologies and a primer to industry 5.0, in Imaging and Sensing for Unmanned Aircraft Systems, Vol. 2, 1, 1–22, ed. by V. V. Estrela, J. Hemanth, O. Saotome, G. Nikolakopoulos, R. Sabatini, (IET, London, 2020)

    Google Scholar 

  23. A. Arshaghi, N. Razmjooy, V.V. Estrela, P. Burdziakowski, D.A. Nascimento, A. Deshpande, P.P. Patavardhan, Image transmission in UAV MIMO UWB-OSTBC system over Rayleigh channel using multiple description coding (MDC), in Imaging and Sensing for Unmanned Aircraft Systems, Vol. 2, 4, 67–90, ed. by V. V. Estrela, J. Hemanth, O. Saotome, G. Nikolakopoulos, R. Sabatini, (IET, London, 2020). https://doi.org/10.1049/PBCE120G_ch4

    Chapter  Google Scholar 

  24. H.J. Loschi, V.V. Estrela, D.J. Hemanth, S.R. Fernandes, Y. Iano, A.A. Laghari, A. Khan, H. He, R. Sroufe, Communications requirements, video streaming, communications links and networked UAVs, in Imaging and Sensing for Unmanned Aircraft Systems, Vol. 2, 6, 113–132, ed. by V. V. Estrela, J. Hemanth, O. Saotome, G. Nikolakopoulos, R. Sabatini, (IET, London, 2020)

    Google Scholar 

  25. P. Ferrari, A. Flammini, S. Rinaldi, G. Prytz, Evaluation of time gateways for synchronization of substation automation systems. IEEE Trans. Instrum. Meas. 61(10), 2612–2621 (2012)

    Article  Google Scholar 

  26. K. Schneider, C.C. Liu, A proposed method of partially decentralised power system protection, in Proceedings of CRIS 2004, (2004)

    Google Scholar 

  27. F.A.-C. Figuerola, L.C. Graell, J.O. Enciso, Type an IP based, highly reliable telecommu-nications framework for advanced smart grid applications, in Proceedings of 44th International Conference on Large High Voltage Electric Systems (2012), 7 p

    Google Scholar 

  28. D. Della Giustina, P. Ferrari, A. Flammini, S. Rinaldi, Experimental characterization of time synchronization over a heterogeneous network for smart grids, in Proceedings of AMPS (2013), pp. 132–137

    Google Scholar 

  29. IEC Communication networks and systems for power utility automation, IEC 61850 Ed. 2 (2011)

    Google Scholar 

  30. M. Lombardi, J. Levine, J. Lopez, F. Jimenez, J. Bernard, M. Gertsvolf, et al., International comparisons of network time protocol servers, in Proceedings of the 2014 Precise Time and Time Interval Systems and Applications Meeting, 1–4 December, Boston, Massachusetts (2014), pp. 57–66

    Google Scholar 

  31. A. Novick, M.A Lombardi Comparison of NTP servers connected to the same reference clock and the same network, Proceedings of the 2017 Precise Time and Time Interval Systems and Applications Meeting, 30 January–2 February, 2017, Monterey, California (2017), pp. 264–270

    Google Scholar 

  32. S. Sommars, Challenges in time transfer using the Network Time Protocol (NTP), Proceedings of the 2017 Precise Time and Time Interval Systems and Applications Meeting, 30 January–2 February, 2017, Monterey, California (2017), pp. 271–290

    Google Scholar 

  33. LI X ZH, Research on the Network Time Synchronization System Based on IEEE1588 (National Time Service Center, Chinese Academy of Sciences, 2011)

    Google Scholar 

  34. V.V. Estrela, J. Hemanth, O. Saotome, E.G.H. Grata, D.R.F. Izario, Emergency response cyber-physical system for flood prevention with sustainable electronics, in Proceedings of the 3rd Brazilian Technology Symposium. BTSym 2017, Campinas, SP, Brazil, ed. by Y. Iano, R. Arthur, O. Saotome, V. V. Estrela, H. J. Loschi, (Springer, Zurich, 2019). https://doi.org/10.1007/978-3-319-93112-8_33

    Chapter  Google Scholar 

  35. Mills D.L. RFC1305 - NTPv3, http://rfc-editor.org/, last accessed 2020/05/21

  36. D.L. RFC4330 - SNTPv4., http://rfc-editor.org/, last accessed 2020/05/21

  37. M. Park, B. Kang, K. Jeong, Paper-based biochip assays and recent developments: A review. Biochip J. 12, 1–10 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Elbatoul Dinar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dinar, A.E., Ghouali, S., Merabet, B., Feham, M. (2021). Packet Synchronization in a Network Time Protocol Server and ASTM Elecsys Packets During Detection for Cancer with Optical DNA Biochip. In: Khelassi, A., Estrela, V.V. (eds) Advances in Multidisciplinary Medical Technologies ─ Engineering, Modeling and Findings. Springer, Cham. https://doi.org/10.1007/978-3-030-57552-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57552-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57551-9

  • Online ISBN: 978-3-030-57552-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics